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SUMMARY

A new generalization of the flux-corrected transport (FCT) methodology to implicit finite element
discretizations is proposed. The underlying high-order scheme is supposed to be unconditionally stable
and produce time-accurate solutions to evolutionary convection problems. Its nonoscillatory low-order
counterpart is constructed by means of mass lumping followed by elimination of negative off-diagonal
entries from the discrete transport operator. The raw antidiffusive fluxes, which represent the difference
between the high- and low-order schemes, are updated and limited within an outer fixed-point iteration.
The upper bound for the magnitude of each antidiffusive flux is evaluated using a single sweep of the
multidimensional FCT limiter at the first outer iteration. This semi-implicit limiting strategy makes it
possible to enforce the positivity constraint in a very robust and efficient manner. Moreover, the compu-
tation of an intermediate low-order solution can be avoided. The nonlinear algebraic systems are solved
either by a standard defect correction scheme or by means of a discrete Newton approach, whereby the
approximate Jacobian matrix is assembled edge by edge. Numerical examples are presented for two-
dimensional benchmark problems discretized by the standard Galerkin finite element method combined
with the Crank–Nicolson time stepping. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The advent of nonlinear high-resolution schemes for convection-dominated flows traces its origins
to the flux-corrected transport (FCT) methodology introduced in the early 1970s by Boris and
Book [1]. The fully multidimensional generalization proposed by Zalesak [2] has formed a very
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general framework for the design of FCT algorithms by representing them as a blend of linear
high- and low-order approximations. Unlike other limiting techniques, which are typically based
on geometric design criteria, flux correction of FCT type is readily applicable to finite element
discretizations on unstructured meshes [3, 4]. A comprehensive summary of the state of the art
can be found in [4–7].

The design philosophy behind modern front-capturing methods involves a set of physical or
mathematical constraints to be imposed on the discrete solution so as to prevent the formation of
spurious undershoots and overshoots in the vicinity of steep gradients. To this end, the following
algorithmic components are to be specified [6, 7]:

• a high-order approximation which may fail to possess the desired properties;
• a low-order approximation which does enjoy these properties but is less accurate;
• a way to decompose the difference between the above into a sum of skew-symmetric internodal
fluxes which can be manipulated without violating mass conservation; and

• a cost-effective mechanism for adjusting these antidiffusive fluxes in an adaptive fashion so
that the imposed constraints are satisfied for a given solution.

Classical FCT algorithms are based on an explicit correction of the low-order solution whose local
extrema serve as the upper/lower bounds for the sum of limited antidiffusive fluxes. In the case of
an implicit time discretization, which gives rise to a nonlinear algebraic system, the same strategy
can be used to secure the positivity of the right-hand side, whereas the left-hand side is required
to satisfy the M-matrix property. A nonsingular discrete operator A with nonpositive off-diagonal
entries ai j�0,∀ j �= i is called an M-matrix if all the coefficients of its inverse are nonnegative.
Consequently, for an M-matrix Ax�0 implies that x�0.

The rationale for the development of implicit FCT algorithms stems from the fact that the
underlying linear discretizations must be stable. In particular, the use of an unstable high-order
method may give rise to nonlinear instabilities which manifest themselves in significant distortions
of the solution profiles as an aftermath of aggressive flux limiting. In the finite element context,
a proper amount of streamline diffusion can be used to stabilize an explicit Galerkin scheme.
However, the evaluation of extra terms increases the cost of matrix assembly and the time step must
satisfy a restrictive Courant–Friedrichs–Lewy (CFL) condition. On the other hand, unconditionally
stable implicit methods can be operated at large time steps (unless iterative solvers fail to converge
or the positivity criterion is violated) and there is no need for any extra stabilization. Moreover,
the overhead cost is insignificant, since the use of a consistent-mass matrix leads to a sequence of
linear systems even in the fully explicit case.

The generalized FEM-FCT methodology introduced in [8, 9] and refined in [10, 11] is applicable
to implicit time discretizations but the cost of iterative flux correction is rather high if the sum
of limited antidiffusive fluxes and the nodal correction factors need to be updated in each outer
iteration. In addition, the nonlinear convergence rates leave a lot to be desired in many cases. The
use of ‘frozen’ correction factors computed at the beginning of the time step by the standard Zalesak
limiter alleviates the convergence problems but the linearized scheme can no longer be guaranteed
to remain positivity-preserving. The semi-implicit limiting strategy to be described below makes
it possible to overcome this problem and enforce the positivity constraint at a cost comparable
with that of explicit flux correction. The resulting FEM-FCT algorithm is to be recommended for
strongly time-dependent problems discretized in time by the Crank–Nicolson scheme. The design
of general-purpose (GP) flux limiters which are more expensive but do not suffer from a loss of
accuracy at large time steps is addressed in [12].
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In the present paper, we compare a new semi-implicit FCT scheme with its semi-explicit
prototype and focus on the iterative solution of the resulting nonlinear algebraic systems. As an
alternative to the fixed-point defect correction scheme which tends to converge rather slowly, a
discrete Newton method tailored to the peculiarities of FEM-FCT schemes is developed. The sparse
Jacobian matrix is approximated with a second-order accuracy by means of divided differences
and assembled edge by edge. The semi-implicit nature of the new FCT limiter makes the Jacobian
assembly particularly efficient, since the sparsity pattern of the underlying matrices is preserved.
A detailed numerical study illustrates the potential of flux-corrected Galerkin schemes combined
with discrete Newton methods for the treatment of nonlinearities.

2. ALGEBRAIC FLUX CORRECTION

In this paper, we adopt an algebraic approach to the design of high-resolution schemes which
consists of imposing certain mathematical constraints on discrete operators, so as to achieve some
favorable matrix properties. A handy algebraic criterion, which represents a multidimensional
generalization of Harten’s TVD theorem, was introduced by Jameson [13, 14] who proved that a
semi-discrete scheme of the general form

dui
dt

=∑
j �=i

ci j (u j −ui ), ci j�0 ∀ j �= i (1)

is local extremum diminishing (LED). After the discretization in time by a two-level scheme,
such methods remain positivity-preserving provided that each solution update un →un+1 or the
converged steady-state solution un+1=un satisfies an algebraic system of the form

Aun+1= Bun+ f (2)

where A={ai j } is an M-matrix, whereas B={bi j } and f ={ fi } have no negative entries. Under
these conditions, the positivity of the old solution carries over to the new one [6, 11]

un�0 ⇒ un+1= A−1[Bun+ f ]�0 (3)

If the underlying spatial discretization is LED, then the off-diagonal coefficients of both matrices
have the right sign, while the positivity condition bii�0 for the diagonal entries of B yields a
readily computable upper bound for admissible time steps [6]. In what follows, we discretize in
time using the standard �-scheme which yields A= I −��tC and B= I +(1−�)�tC . The resulting
CFL-like condition for the time step �t reads

1+�t (1−�)min
i

cnii�0 for 0��<1 (4)

The discretization is unconditionally positivity-preserving if a fully implicit time-stepping scheme
(�=1) is adopted. Of course, the above algebraic constraints are not the necessary but merely the
sufficient conditions for a numerical scheme to be local extremum diminishing and/or positivity-
preserving. In the linear case, they turn out to be far too restrictive. According to the well-known
Godunov theorem, linear schemes satisfying these criteria are doomed to be (at most) first-order
accurate. On the other hand, a high-order discretization which fails to satisfy the imposed constraints
unconditionally can be adjusted so that it admits an equivalent representation of form (1) and/or
(2), where the matrix entries may depend on the unknown solution. This idea makes it possible
to construct a variety of nonlinear high-resolution schemes based on the so-called algebraic flux
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Figure 1. Roadmap of matrix manipulations.

correction (AFC) paradigm. A detailed overview of this methodology is given in the survey article
[6]. The design of flux limiters for finite element discretizations with a consistent-mass matrix is
addressed in [12].

To keep the presentation self-contained, we will follow the road map displayed in Figure 1
and explain the meaning of all discrete operators in the next three sections. Roughly speaking, a
high-order Galerkin discretization is to be represented in the generic form (2), where the matrices
A and B do satisfy the above-mentioned positivity constraint. In order to guarantee that the vector
f poses no hazard to positivity either, it is to be replaced by its limited counterpart f ∗ such that
the right-hand side remains nonnegative for un�0. This modification is mass conserving provided
that both f and f ∗ can be decomposed into skew-symmetric internodal fluxes as defined below.
A family of implicit FEM-FCT schemes based on this algebraic approach was proposed in [8, 9]
and combined with an iterative-limiting strategy in [11]. In Section 5.2, we present an alternative
generalization of Zalesak’s limiter which offers some extra advantages. The new approach to flux
correction of FCT type is also based on the positivity constraint (2) but enforces it in another way
so that the costly computation of nodal correction factors is performed just once per time step.
The positivity of the resulting semi-implicit FCT algorithm will be proven in Section 5.3.

Solution strategies for the nonlinear algebraic system to be solved in each time step are presented
in Section 5.4. In particular, a discrete Newton method is proposed as a promising alternative
to the standard defect correction approach. A suitable approximation to the Jacobian matrix is
constructed using divided differences. In the framework of the semi-implicit FCT algorithm, this
can be accomplished in a very efficient way since the correction factors are computed just once
per time step in the first outer iteration. In contrast, the use of a semi-explicit FEM-FCT scheme
results in an extended sparsity pattern for the Jacobian operator. The same side effect is observed
in the context of high-resolution schemes of TVD type [15].

3. SEMI-DISCRETE HIGH-ORDER SCHEME

As a standard model problem, consider the time-dependent continuity equation for a scalar quantity
u transported by the velocity field v which is assumed to be known

�u
�t

+∇ ·(vu)=0 (5)
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Let the discretization in space be performed by an (Galerkin) FEM which yields a DAE system
for the vector of time-dependent nodal values

MC
du

dt
=Ku (6)

where MC={mi j } denotes the consistent-mass matrix and K ={ki j } is the discrete transport
operator. The latter may contain some streamline diffusion used for stabilization purposes and/or
to achieve better phase accuracy, e.g. in the framework of Taylor–Galerkin methods. Its skew-
symmetric part 1

2 (K −KT) provides a consistent discretization of v ·∇, whereas the symmetric
part 1

2 (K +KT)−diag{K } represents a discrete (anti-)diffusion operator.

4. SEMI-DISCRETE LOW-ORDER SCHEME

In the case of linear discretizations, the algebraic constraints (1) and (2) can be readily enforced
by means of ‘discrete upwinding’ as proposed in [8, 9]. For a semi-discrete finite element scheme
of the form (6), the required matrix manipulations are as follows:

• replace the consistent-mass matrix MC by its lumped counterpart ML=diag{mi };
• render the operator K local extremum diminishing by adding an artificial diffusion operator

D={di j } so as to eliminate all negative off-diagonal coefficients.

This straightforward ‘postprocessing’ transforms (6) into its linear LED counterpart

ML
du

dt
= Lu, L=K +D (7)

where D is supposed to be a symmetric matrix with zero row and column sums. For each pair of
nonzero off-diagonal coefficients ki j and k ji of the high-order operator K , the optimal choice of
the artificial diffusion coefficient di j reads [6, 9]

di j =max{−ki j ,0,−k ji }=d ji (8)

Alternatively, one can apply discrete upwinding to the skew-symmetric part 1
2 (K −KT) of the

original transport operator K , which corresponds to

di j = |ki j −k ji |
2

− ki j +k ji
2

=d ji (9)

In either case, the off-diagonal coefficients of the low-order operator li j :=ki j +di j are nonnegative,
as required by the LED criterion (1). Owing to the zero row sum property of the artificial diffusion
operator D, the diagonal coefficients of L are given by

li i :=kii −∑
j �=i

di j (10)

The semi-discretized equation for the nodal value ui (t) can be represented as

mi
dui
dt

=∑
j �=i

li j (u j −ui )+ui
∑
j
li j (11)
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where mi =∑ j mi j>0 and li j�0, ∀ j �= i . The last term in the above expression represents a
discrete counterpart of −u∇ ·v which is responsible for a physical growth of local extrema [6].
Recall that the operator D has zero row sums so that ui

∑
j li j =ui

∑
j ki j in Equation (11). In the

semi-discrete case, this term is harmless since (cf. [16])

ui (t)=0, u j (t)�0 ∀ j �= i ⇒ dui
dt

�0 (12)

which proves that the low-order scheme (7) is positivity-preserving. For the fully discrete system
to inherit this property, the time step should be chosen in accordance with the CFL-like condition
(4) unless the backward Euler time stepping (�=1) is employed.

5. NONLINEAR FEM-FCT ALGORITHM

The high-order system (6) discretized in time by a standard two-level �-scheme

[MC−��t K ]un+1=[MC+(1−�)�t K ]un (13)

admits an equivalent representation in form (2) amenable to flux correction

[ML−��t L]un+1=[ML+(1−�)�t L]un+ f (un+1,un) (14)

The last term in the right-hand side is assembled from skew-symmetric internodal fluxes fi j which
can be associated with the edges of the sparsity graph [6]

fi =∑
j �=i

fi j where f j i =− fi j (15)

Specifically, these raw antidiffusive fluxes, which offset the discretization error induced by mass
lumping and discrete upwinding, are given by the formula [6, 11]

fi j =[mi j +��tdn+1
i j ](un+1

i −un+1
j )−[mi j −(1−�)�tdni j ](uni −unj ) (16)

Interestingly enough, the contribution of the consistent-mass matrix consists of a truly antidiffusive
implicit part and a diffusive explicit part which has a strong damping effect. In fact, explicit mass
diffusion of the form (MC−ML)un has been used to construct the ‘monotone’ low-order method
in the framework of explicit FEM-FCT algorithms [3].

In the case of an implicit time discretization (0<��1), the nonlinearities inherent to the governing
equation and/or to the employed high-resolution scheme call for the use of an iterative solution
strategy. Let successive approximations to the solution un+1 at the new time level tn+1= tn+�t
be computed step by step in the framework of a fixed-point iteration

u(m+1) =u(m)+[C (m)]−1r (m), m=0,1,2, . . . (17)

where C (m) denotes a suitable ‘preconditioner’ (to be defined below) that should be easy to invert.
The corresponding residual vector of the mth outer iteration is given by

r (m) =b(m)−Au(m) (18)

Here, A represents the ‘monotone’ evolution operator for the underlying low-order scheme

A=ML−��t L , L=K +D (19)
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which enjoys theM-matrix property, since the off-diagonal entries of L are nonnegative by construc-
tion. The right-hand side b(m), which needs to be updated in each outer iteration, consists of a
low-order part augmented by limited antidiffusion [6]

b(m) = Bun+ f ∗(u(m),un), B=ML+(1−�)�t L (20)

In order to prevent the formation of nonphysical undershoots and overshoots, the raw antidiffusive
fluxes fi j should be multiplied by suitable correction factors so that

f ∗
i =∑

j �=i
�i j fi j where 0��i j�1 (21)

This adjustment transforms (14) into a nonlinear combination of the low-order scheme (�i j ≡0)
and the original high-order one (�i j ≡1). The task of the flux limiter is to determine an optimal
value of each correction factor �i j individually so as to remove as much artificial diffusion as
possible without violating the positivity constraint introduced in Section 2.

In a practical implementation, the ‘inversion’ of the operator C (m) is also performed by a suitable
iteration procedure for solving the sequence of linear subproblems

C (m)�u(m+1) =r (m), m=0,1,2, . . . (22)

After a certain number of inner iterations, the increment �u(m+1) is applied to the last iterate,
whereby the solution from the previous time step provides a reasonable initial guess

u(m+1) =u(m)+�u(m+1), u(0) =un (23)

A natural choice for the preconditioner C (m) is the monotone low-order operator (19) so that the
iteration procedure (17) yields the standard fixed-point defect correction scheme

Au(m+1) =b(m), m=0,1,2, . . . (24)

Ideally, C (m) should be a good approximation of the Jacobian matrix J (m) with coefficients

J (m)
i j =− �ri

�u j

∣∣∣∣
u=u(m)

(25)

evaluated at the last iterate u(m). It is well known that the convergence behavior of Newton’s
method which corresponds to (17) with C (m) = J (m) is quite sensitive to the initial guess u(0).
Owing to the fact that linear subproblems (22) are solved by an iterative technique, the resulting
algorithm is categorized as an inexact Newton method [17]. A simple inexact scheme is based on
the following convergence criterion in each linear iteration:

‖J (m)�u(m+1)−r (m)‖��‖r (m)‖ (26)

whereby the so-called forcing term �∈[0,1) can be chosen adaptively [18]. Furthermore, some
globalization strategy may be required to enhance the robustness of Newton’s method. For a detailed
description of such techniques which are mainly designed to guarantee a sufficient decrease of the
nonlinear residual (18), the interested reader is referred to the literature, e.g. [19]. In the case of
time-dependent problems, globalization is less critical due to the fact that the solution from the
last time step may serve as a good initial guess.
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Linear subproblems (22) can be solved, e.g. using a Krylov subspace method such as BiCGSTAB
or GMRES combined with preconditioning of ILU type. Owing to the M-matrix property of the
evolution operator (19), its incomplete LU factorization unconditionally exists and is unique [20].
Hence, it is advisable to use A as preconditioner for the Krylov solver even if the Jacobian matrix
(25) is adopted in the outer iteration procedure.

5.1. Semi-explicit FCT limiter

The first implicit FCT algorithm for finite element discretizations on unstructured meshes [8, 9] was
based on the following limiting strategy which was eventually superseded by further extensions
proposed in a series of subsequent publications [10, 11]:

1. Compute the high-order solution to (14) in an iterative way by solving (17) using the total
amount of raw antidiffusion (�i j ≡1) to assemble the term f ∗.

2. Evaluate the contribution of the consistent-mass matrix to the raw antidiffusive fluxes (16)
using the converged high-order solution as a substitute for un+1.

3. Solve the explicit subproblem MLũ= Bun for the positivity-preserving intermediate solution
ũ which represents an explicit low-order approximation to u(tn+1−�).

4. Invoke Zalesak’s multidimensional FCT limiter to determine the correction factors �i j so as
to secure the positivity of the right-hand side as explained below.

5. Compute the final solution by solving the linear system Aun+1=b, where

bi =mi ũi +∑
j �=i

f ∗
i j , f ∗

i j =�i j fi j (27)

In the fully explicit case (�=0), we have A=ML so that un+1=M−1
L b can be computed explicitly

from (24), and the classical FEM-FCT algorithm of Löhner et al. [3] and Löhner and Baum [4] is
recovered. The crux of the above generalization lies in the special choice of the operator A which
guarantees that the positivity of the right-hand side is preserved, whence

ũ�0 ⇒ b�0 ⇒ un+1= A−1b�0 (28)

The flux correction process starts with an optional ‘prelimiting’ of the raw antidiffusive fluxes
fi j . It consists of cancelling the ‘wrong’ ones which tend to flatten the intermediate solution and
create numerical artifacts. The required adjustment is given by [12]

f ′
i j :=max{0, pi j }(ũi − ũ j ), pi j = fi j/(ũi − ũ j ) (29)

The remaining fluxes are truly antidiffusive and need to be limited. The upper and lower bounds
to be imposed on the net antidiffusive flux depend on the local extrema

ũmax
i =max

j∈Si
ũ j , ũmin

i =min
j∈Si

ũ j (30)

where Si ={ j |mi j �=0} denotes the set of nodes which share an element with node i .
In the worst case, all antidiffusive fluxes in node i have the same sign. Hence, it is worthwhile

to treat the positive and negative ones separately, as proposed by Zalesak [2].
1. Evaluate the sums of all positive and negative antidiffusive fluxes in node i

P+
i =∑

j �=i
max{0, f ′

i j }, P−
i =∑

j �=i
min{0, f ′

i j } (31)
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2. Compute the distance to a local maximum/minimum of the low-order solution

Q+
i = ũmax

i − ũi , Q−
i = ũmin

i − ũi (32)

3. Calculate the nodal correction factors which prevent overshoots/undershoots

R+
i =min{1,mi Q

+
i /P+

i }, R−
i =min{1,mi Q

−
i /P−

i } (33)

4. Check the sign of f ′
i j and apply R±

i or R∓
j , whichever is smaller, so that

�i j =
{
min{R+

i , R−
j } if f ′

i j>0

min{R−
i , R+

j } otherwise
(34)

This symmetric-limiting strategy guarantees that the corrected right-hand side (27) satisfies the
constraint ũmin

i �bi/mi�ũmax
i . Owing to the fact that the low-order operator A was designed to be

an M-matrix, the resulting scheme proves positivity-preserving [6, 9].
It is worth mentioning that the constituents of the sums P±

i vary with �t , while the corresponding
upper/lower bounds Q±

i are fixed. Consequently, the correction factors �i j produced by Zalesak’s
limiter depend on the underlying time step. This peculiarity of FCT methods turns out to be a
blessing and a curse at the same time. On the one hand, a larger portion of the raw antidiffusive
flux fi j may be retained as the time step is refined. On the other hand, the accuracy of FCT
algorithms deteriorates as �t increases, since the positivity constraint (2) becomes too restrictive.
The iterative-limiting strategy proposed in [11] alleviates this problem to some extent by adjusting
the correction factors �i j in each outer iteration so as to recycle the rejected antidiffusion step by
step. However, the cost of iterative flux correction is rather high and severe convergence problems
may occur. Therefore, other limiting techniques such as the general-purpose flux limiter introduced
in [12] are to be preferred if the solution is expected to reach a steady state in the long run.

5.2. Semi-implicit FCT limiter

For truly time-dependent problems, the use of moderately small time steps is dictated by accuracy
considerations so that flux limiting of FCT type is appropriate. In this case, the underlying time-
stepping method should provide (unconditional) stability and be at least second-order accurate in
order to capture the evolutionary details. For this reason, we favor an implicit time discretization
of Crank–Nicolson type (�= 1

2 ) and mention the strongly A-stable fractional-step �-scheme [21]
as a promising alternative.

The semi-explicit limiting strategy presented in the previous section can be classified as an
algorithm of predictor–corrector type since the implicit part of the raw antidiffusive flux (16)
is evaluated using the converged high-order solution in place of un+1. This handy linearization,
which can be traced back to the classical FEM-FCT procedure [3], makes it possible to perform
flux correction in a very efficient way, since Zalesak’s limiter is invoked just once per time step.
However, a lot of CPU time needs to be invested in the iterative solution of the ill-conditioned
high-order system and the convergence may even fail if the time step is too large. Moreover,
the final solution fails to satisfy the nonlinear algebraic system (17) upon substitution. On the
other hand, an update of the auxiliary quantities P±

i , Q±
i , and R±

i in each outer iteration would
trigger the cost of flux limiting and compromise the benefits of implicit time stepping. In order to
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circumvent this problem, let us introduce a semi-implicit FCT algorithm which can be implemented
as follows:

• At the first outer iteration (m=1), compute a set of antidiffusive fluxes f̃i j which provide an
explicit estimate for the admissible magnitude of f ∗

i j =�i j fi j

1. Initialize all auxiliary arrays by zeros: P±
i ≡0, Q±

i ≡0, R±
i ≡0.

2. Compute the positivity-preserving intermediate solution of low order:

ũ=un+(1−�)�tM−1
L Lun (35)

3. For each pair of neighboring nodes i and j , evaluate the raw antidiffusive flux

f ni j =�tdni j (u
n
i −unj ) (36)

and add its contribution to the sums of positive/negative edge contributions

P±
i := P±

i +max
min {0, f ni j }, P±

j := P±
j +max

min {0,− f ni j } (37)

4. Update the maximum/minimum admissible increments for both nodes:

Q±
i :=max

min {Q±
i , ũ j − ũi }, Q±

j :=max
min {Q±

j , ũi − ũ j } (38)

5. Relax the constraint R±
i �1 for the nodal correction factors and compute

R±
i :=mi Q

±
i /P±

i (39)

6. Multiply the raw antidiffusive fluxes f ni j by the minimum of R±
i and R∓

j :

f̃i j =
{
min{R+

i , R−
j } f ni j if f ni j>0

min{R−
i , R+

j } f ni j otherwise
(40)

• At each outer iteration (m=1,2, . . .), assemble f ∗ and substitute it into (20)

1. Update the target flux (16) using the solution from the previous iteration:

fi j =[mi j +��td(m)
i j ](u(m)

i −u(m)
j )−[mi j −(1−�)�tdni j ] (uni −unj ) (41)

2. Constrain each flux fi j so that its magnitude is bounded by that of f̃i j :

f ∗
i j =

{
min{ fi j ,max{0, f̃i j }} if fi j>0

max{ fi j ,min{0, f̃i j }} otherwise
(42)

3. Insert the limited antidiffusive fluxes f ∗
i j into the right-hand side (20):

b(m)
i :=b(m)

i + f ∗
i j , b(m)

j :=b(m)
j − f ∗

i j (43)

Owing to the fact that f ni j is not the real target flux but merely an explicit predictor used to estimate

the maximum amount of admissible antidiffusion, the multipliers R±
i are redefined so that the ratio
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f̃i j/ f ni j may exceed unity. However, the effective correction factors �i j := f ∗
i j/ fi j are bounded by

0 and 1, as required for consistency.
Instead of computing the optimal upper/lower bounds (32) for a given time step, it is also

possible to use some reasonable fixed bounds and adjust the time step if this is necessary to satisfy
a CFL-like condition (as in the case of TVD methods). For instance, the auxiliary quantities Q±

i
can be computed using un instead of ũ

Q+
i =max

j∈Si
unj −uni , Q−

i =min
j∈Si

unj −uni (44)

The corresponding nodal correction factors R±
i should be redefined as [12]

R±
i =(mi −mii )Q

±
i /P±

i (45)

where mi −mii =∑ j �=i mi j is the difference between the diagonal entries of the consistent- and
lumped-mass matrices. This modification eliminates the need for evaluation of the intermediate
solution ũ in (35) and leads to a single-step FCT algorithm.

For a given time step, multipliers (45) will typically be smaller than those defined by (39).
However, in either case the denominator P±

i is proportional to �t . Therefore, the difference
between the effective correction factors �i j will shrink and eventually vanish as the time step is
refined. As long as �t is sufficiently small, the accuracy of both FCT techniques depends solely
on the choice of the underlying high-order scheme.

5.3. Positivity proof

The positivity proof for the semi-implicit FCT algorithm (35)–(43) follows that for the classical
Zalesak limiter, see [6, 9]. In the nontrivial case f ∗

i �=0, the i th component of the right-hand side
(20) admits the following representation:

b∗
i =mi ũi + f ∗

i =(mi −�i )ũi +�i ũk (46)

where the coefficient �i = f ∗
i /(ũk− ũi ) is defined in terms of the local extremum

ũk =
{
ũmax
i if f ∗

i >0

ũmin
i if f ∗

i <0
(47)

This definition implies that f ∗
i =�i Q

±
i , where �i>0. By virtue of (46), the sign of the intermediate

solution ũ is preserved if the inequality mi −�i�0 holds.
In the case f ∗

i <0, the antidiffusive correction to node i is bounded from below by

mi Q
−
i �R−

i P−
i �

∑
j �=i

min{0, f̃i j }� f ∗
i =�i Q

−
i (48)

Similarly, a strictly positive antidiffusive correction f ∗
i >0 is bounded from above by

�i Q
+
i = f ∗

i �
∑
j �=i

max{0, f̃i j }�R+
i P+

i �mi Q
+
i (49)

It follows that 0��i�mi , which proves that b∗
i �0 provided that ũi�0 and ũk�0.
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In light of the above, the semi-implicit FCT limiter is positivity-preserving as long as the
diagonal coefficients of the matrix B as defined in (20) are nonnegative. The corresponding CFL-
like condition (4) for the maximum admissible time step reads

(1−�)�t�min
i

|mi/ li i | (50)

The positivity of the single-step algorithm based on the slack bounds (44)–(45) can be proven in
a similar way using the following representation of the right-hand side:

b∗
i =(mi −�i )u

n
i +�i u

n
k +(1−�)�t

∑
j
li j u

n
j (51)

In this case, the limited antidiffusive correction to node i can be estimated as follows:

(mi −mii )Q
−
i � f ∗

i �(mi −mii )Q
+
i (52)

so that mi −�i�mii . Thus, the right-hand side given by (51) preserves the sign of un if the time
step satisfies the positivity constraint for all diagonal coefficients

(1−�)�t�min
i

|mii/ li i | (53)

Under the above conditions, the M-matrix property of the low-order operator (19) is sufficient
to guarantee that each solution update is positivity-preserving if the fixed-point iteration (17) is
preconditioned by C (m) = A, ∀m. On the other hand, only the fully converged solution is certain
to remain positive if Newton’s method (C (m) = J (m)) is employed.

5.4. Approximation of Jacobians

For the practical application of Newton’s method, it remains to devise an algorithm for the
construction of the Jacobian matrix (25). For simplicity, superscript m will be omitted unless
indicated otherwise. In what follows, differentiation is to be performed with respect to u, whereas
un is regarded as a given constant. The nonlinear residual (18) depends on the ‘monotone’ operator
A and on the right-hand side b(m) which are given by relations (19) and (20), respectively. Hence,
it is advisible to split the Jacobian operator J = J̄+ J ∗ into its ‘upwind’ part J̄ ={ J̄i j } and the
contribution of the antidiffusive correction J ∗ ={J ∗

i j }.
Formally, the upwind Jacobian is given by J̄ = A′u+A which reduces to the M-matrix A=

ML−��t L for linear model problems of form (5). On the other hand, its derivative A′ does not
vanish if the original transport operator K (u) and hence its LED counterpart L(u)=K (u)+D(u)

depend on the unknown solution. Since the artificial diffusion operator D(u) was derived on the
semi-discrete level by means of matrix manipulations, no analytical expression is available for
A′(u). As a remedy, the Jacobian matrix is approximated by means of divided differences. To this
end, let f :Rn →R denote a generic function for which the central divided difference operator is
defined as follows:

Dk[ f (u)] := f (u+�ek)− f (u−�ek)

2�
(54)

In the above equation, ek denotes the kth unit vector. The optimal choice of the perturbation
parameter 0<��1 requires some knowledge of the sensitivity of the function f and has been
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addressed by many authors. Following a strategy proposed by Nielsen et al. [22] it can be chosen
proportional to the square root of the machine precision �. The formula

�=[�(1+‖u‖)]1/3 (55)

suggested in [23] takes into account the norm of the solution and is claimed to reduce the noise
arising from the numerical evaluation of the function f . Some alternative choices are given in a
survey paper on Jacobian-free Newton–Krylov methods by Knoll and Keyes [24].

The central divided difference operator introduced in (54) yields a second-order accurate approx-
imation for each entry of the upwind Jacobian J̄

J̄ik =Dk[(Au)i ]+O(�2) (56)

Since A=ML−��t L , the so-defined coefficient J̄ik can be cast into the form [15]

J̄ik =�ikmi −��t

(
l̄ik+∑

j
Dk[li j ]u j

)
(57)

where �ik ∈{0,1} denotes the standard Kronecker delta symbol and the auxiliary quantity l̄ik stands
for the average of the perturbed evolution coefficients resulting from discrete upwinding

l̄ik = lik(u+�ek)+lik(u−�ek)

2
(58)

It is also possible to neglect averaging in Equation (57) and replace the averaged transport operator
L̄ by the standard low-order term L . If the problem at hand is linear, the upwind Jacobian reduces
to J̄ =ML−��t L due to the fact that all divided differences vanish. It is worth mentioning that
the decomposition into individual edge contributions yields an efficient assembly procedure for
the Jacobian which can be considered as a viable alternative to the element-by-element procedure
traditionally employed in the finite element community [25].

Interestingly enough, the operator J̄ exhibits the same sparsity pattern as the finite element
matrix, that is, J̄i j �=0 implies mi j �=0. As soon as AFC comes into play, this amenable property
may be lost. For upwind-biased discretization schemes of TVD type, the phenomenon of matrix
fill-in engendered by the flux limiter has been analyzed in Section 4.2 of Reference [15]. Owing to
conceptional similarities within the family of AFC schemes, essentially the same analysis remains
valid for symmetric flux limiters [6, 12]. As we are about to see, the semi-implicit FCT algorithm
presented in Section 5.2 is free of this drawback and hence particularly suitable for the application
of Newton’s method.

To highlight this advantage of the semi-implicit approach, let us revisit the general procedure of
evaluating the antidiffusive contribution J ∗ to the Jacobian operator. To this end, let the solution
vector u be perturbed at some node, say k, and compute the compensating antidiffusive fluxes (21)
based on the solution vectors u+�ek and u−�ek following the semi-explicit limiting algorithm
presented in Section 5.1. By construction, the nodal correction factors R±

i defined in (33) may
be affected by this perturbation for all i from the set Sk of nodes which share an element with
node k. Consequently, the final correction factors �i j defined in (34) may have different values
if at least one of the nodes i and j belongs to the set Sk . To put it in a nutshell, the impact
of ‘joggling’ the solution value at one particular node usually propagates along two edges i j by
virtue of the correction factors �i j which are recalculated in each iteration. Figure 2 illustrates the
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Figure 2. Sparsity pattern: finite element matrix vs Jacobian operator.

difference between the sparsity pattern of the finite element matrix and that of the approximate
Jacobian operator constructed as explained above.

As demonstrated in [15], the connectivity graph of the Jacobian is known a priori and can be
directly constructed from that of the stiffness matrix by means of symbolic matrix multiplication.
Owing to the matrix fill-in, the amount of memory required to store the much denser Jacobian
increases considerably and so does the computational cost of linear algebra operations such as
matrix–vector multiplication, construction of an ILU decomposition, etc.

Interestingly enough, it turns out that the antidiffusive Jacobian operator J ∗ for the semi-implicit
FCT algorithm presented in Section 5.2 inherits the sparsity pattern of the finite element matrix.
A closer look at Equations (35)–(40) reveals that the initialization of the antidiffusive fluxes f̃ in
the first outer iteration (m=1) does not rely on the dependent variable u(m). Hence, the explicit
estimate for the admissible antidiffusion which is already computed in the residual assembly can
also be adopted for the construction of the Jacobian. In essence, the target fluxes (16) which need
to be updated in each iteration are constrained such that their magnitude is bounded by that of f̃ .
Let us emphasize the fact that the correction factors �i j are only defined implicitly and hence will
not entail a widening of the matrix stencil. As a result, the Jacobian part J ∗ can be assembled in
a rather efficient way.

As a rule of thumb, the kth column of J ∗ can be assembled by performing the algorithmic
steps (41) and (42) based on the perturbed solution vectors u+�ek and u−�ek to evaluate the
corresponding fluxes f +∗ = f ∗(u+�ek) and f −∗ = f ∗(u−�ek) and scale their difference by 2�.
However, this approach is quite expensive since it does not exploit the sparsity of the Jacobian
matrix which is inherited from the global evolution operator A. In order to circumvent this problem,
let us introduce an efficient algorithm for assembling the operator J ∗ for the semi-implicit FCT
limiter in an edge-based fashion:

• At each outer iteration (m=1,2, . . .), initialize J ∗ by zero and rebuild it in a loop over edges
i j . This process involves the following steps to be performed for k= i and j

1. Evaluate the explicit antidiffusive contribution and the solution difference:

f ni j =[mi j −(1−�)�tdni j ](uni −unj ), �u(m)
i j =u(m)

i −u(m)
j (59)
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2. Compute auxiliary coefficients using the perturbed solution u(m)±�ek :

z+i j,k =mi j +��tdi j (u
(m)+�ek), z−i j,k =mi j +��tdi j (u

(m)−�ek) (60)

3. Update the perturbed target fluxes (16) depending on the index k:

f +
i j,k =

⎧⎨
⎩
z+i j,k[�u(m)

i j +�]+ f ni j if k= i

z+i j,k[�u(m)
i j −�]+ f ni j otherwise

(61)

f −
i j,k =

⎧⎨
⎩
z−i j [�u(m)

i j −�]+ f ni j if k= i

z−i j [�u(m)
i j +�]+ f ni j otherwise

(62)

4. Constrain each flux f ±
i j,k so that its magnitude is bounded by that of f̃i j :

f +∗
i j,k =

⎧⎨
⎩
min{ f +

i j,k,max{0, f̃i j }} if f +
i j >0

max{ f +
i j,k,min{0, f̃i j }} otherwise

(63)

f −∗
i j,k =

⎧⎨
⎩
min{ f −

i j,k,max{0, f̃i j }} if f −
i j >0

max{ f −
i j,k,min{0, f̃i j }} otherwise

(64)

5. Compute the divided difference and insert it into the kth column of the Jacobian:

f ∗
i j,k = 1

2�
( f +∗

i j,k − f −∗
i j,k ), J ∗

ik := J ∗
ik− f ∗

i j,k, J ∗
jk := J ∗

jk+ f ∗
i j,k (65)

The last three steps call for further explanation. Following expression (41), the implicit contribution
of the target fluxes (61)–(62) is multiplied by the perturbed solution difference (u±�ek)i −(u±
�ek) j , whereby k equals i or j . This yields four possible combinations ui ±��ik−u j ∓�� jk for
j �= i which need to be multiplied by the coefficients z±i j,k . The magnitude of the raw antidiffusive

fluxes f ±
i j,k is bounded by that of the explicit estimate f̃i j . In the last step, the central difference

of the limited fluxes is inserted into the kth column of the Jacobian matrix. Following step (43) of
the original algorithm, node j receives the same flux as node i but with opposite sign. Note that
the antidiffusive fluxes are now applied to the left-hand side of (65) so that the signs for nodes i
and j are reversed.

The above algorithm is applicable to linear and nonlinear transport operators alike. It is worth
mentioning that in the linear case the artificial diffusion coefficient di j does not depend on the
solution so that the auxiliary quantity zi j ≡mi j +��tdi j is not affected by solution variations.
Moreover, the perturbed fluxes exhibit the following symmetry property:

f +
i j,i = zi j [�u(m)

i j +�]+ f ni j = f −
i j, j (66)

f −
i j,i = zi j [�u(m)

i j −�]+ f ni j = f +
i j, j (67)
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As a consequence, the final flux which is inserted into the i th column is also applied to column
number j but with opposite sign. That is, the following skew symmetry holds:

f ∗
i j,i =

1

2�
( f +∗

i j,i − f −∗
i j,i )=− f ∗

i j, j (68)

Hence, it suffices to compute the divided difference (65) only for one index, say k= i , and update
the four coefficients of the Jacobian matrix simultaneously according to

J ∗
i i := J ∗

i i − f ∗
i j,i , J ∗

j i := J ∗
j i + f ∗

i j,i

J ∗
j j := J ∗

j j − f ∗
i j,i , J ∗

i j := J ∗
i j + f ∗

i j,i

(69)

Roughly speaking, the calculation of the operator J ∗ is approximately twice as expensive as
augmenting the right-hand side of (20) by the antidiffusive fluxes making use of the semi-explicit
FCT algorithm (41)–(43). As we are about to see, this extra cost clearly pays off in terms of
total efficiency when it comes to time-accurate simulation of transient flows. Remarkably, this
improvement is already observed if the evolution operator A=ML−��t L is constant and can be
assembled once and for all at the beginning of the simulation so that the standard defect correction
approach (24) does not require further matrix evaluations. The benefits of Newton’s method become
even more significant if the preconditioner (19) needs to be updated in each outer iteration due to
a nonlinear governing equation or a linear but time-dependent velocity field v=v(x, t) so that the
costs for assembling the operators J and J ∗ may be neglected.

5.5. Convergence behavior

A remark is in order regarding the convergence behavior of the fixed-point iteration (17). The
converged solution un+1 is supposed to satisfy a nonlinear algebraic system of the form

A∗un+1= Bun (70)

where A∗ is the nonlinear FCT operator which includes some built-in antidiffusion

A∗un+1 := Aun+1− f ∗ (71)

Clearly, the rate of convergence will depend on ‖A∗−C‖, that is, the approximation property of
the preconditioner C . On the one hand, the operator A as defined in (19) is linear and easy to
‘invert’ because it is an M-matrix. On the other hand, it represents a rather poor approximation to
the original Galerkin operator MC−��t K which is recovered in the limit �i j →1. As a result, the
convergence of a highly accurate FCT algorithm based on the standard defect correction approach
is likely to slow down as the high-order solution is approached.

In light of the above, the lumped-mass version, which is obtained by setting mi j =0 in the
definition of the raw antidiffusive flux, converges much faster than the one based on the consistent
target flux (16). However, mass lumping may have a devastating effect on the accuracy of a time-
dependent solution, as demonstrated by the numerical study performed in the next section. At the
same time, the high phase accuracy provided by the consistent-mass matrix comes at the cost of
slower convergence, due to the fact that the ‘monotone’ preconditioner A is based on ML rather
than MC. The original high-order system (13) which corresponds to �i j ≡1 is particularly difficult
to solve, even though it is linear (see below). Moreover, the number of outer iterations tends to
increase as the mesh is refined.
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In general, there is a trade-off between the accuracy of the numerical solution and convergence
of the fixed-point iteration (24). Any modification of the flux limiter which makes it possible to
accept more antidiffusion has an adverse effect on the nonlinear convergence rates. Conversely,
more diffusive schemes converge much better but their accuracy leaves a lot to be desired. To
overcome this shortcoming, the use of the discrete Newton method is advisable. The number of
outer iterations required to drive the residual to some prescribed tolerance is drastically reduced
and becomes largely independent of the grid refinement level. However, one should keep in mind
that the Jacobian matrix (25) does not possess the M-matrix property so that intermediate solutions
are not necessarily positivity-preserving.

6. NUMERICAL EXAMPLES

In order to evaluate the performance of the new algorithm, we apply it to several time-dependent
benchmark problems discretized using the standard Galerkin method and the second-order accurate
Crank–Nicolson time stepping. After flux limiting, the order of approximation (in space and time)
may vary depending on the local smoothness of the solution. The goal of this numerical study
is to examine the accuracy of the resulting high-resolution scheme as well as the convergence
behavior of the fixed-point iteration (17) and the implications of mass lumping. To this end, the
semi-implicit FCT method (35)–(43) is compared with its semi-explicit prototype (29)–(34) and to
the standard Galerkin discretization. Moreover, the standard defect correction scheme (24) and the
discrete Newton approach are compared with respect to their nonlinear convergence rates as well
as computational efficiency, that is, the total CPU time required to solve the nonlinear algebraic
system (14) up to a prescribed tolerance.

6.1. Convection skew to the mesh

In order to study the convergence behavior of the semi-implicit and semi-explicit FEM-FCT
algorithms as compared with that of the underlying Galerkin scheme, let us solve Equation (5) with
v=(1,1) so that the initial profile is translated along the diagonal of the computational domain
�=(0,1)×(0,1). The numerical study is to be performed for two different initial configurations
centered at the reference point (x0, y0)=(0.3,0.3).

TP1: The first test problem corresponds to the discontinuous initial condition:

u(x, y,0)=
{
1 if max{|x−x0|, |y− y0|}�0.1

0 otherwise
(72)

TP2: The second test problem deals with translation of a smooth function defined as

u(x, y,0)= 1
4 [1+cos(10�(x−x0))][1+cos(10�(y− y0))] (73)

within the circle
√

(x−x0)2+(y− y0)2�0.1 and equal to zero elsewhere.
Figures 3 and 4 display the approximate solutions at time t=0.5 computed using �t=10−3 on a

quadrilateral mesh consisting of 128×128 bilinear elements. The upper diagrams were produced by
the consistent-mass semi-implicit FCT algorithm which yields nonoscillatory solutions bounded by
0 and 1. The underlying high-order scheme remains stable but gives rise to nonphysical undershoots
and overshoots, as seen in the lower diagrams.
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Figure 3. Convection skew to the mesh TP1: 128×128 Q1-elements, t=0.5.

In either case, the numerical solution was computed in an iterative way using the fixed-point
defect correction scheme (17) preconditioned by the low-order operator (19). The stopping criterion
was based on the Euclidean norm of the residual vector

r = Aun+1−Bun− f ∗, ‖r‖=
√
rTr (74)
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Figure 4. Convection skew to the mesh TP2: 128×128 Q1-elements, t=0.5.

which was required to satisfy the inequality ‖r‖�10−4. The difference between the exact solution
u and its finite element approximation uh was measured in the L1-norm

‖u−uh‖1=
∫

�
|u−uh |dx≈∑

i
mi |u(xi , yi )−ui | (75)

as well as in the L2-norm defined by the following formula:

‖u−uh‖22=
∫

�
|u−uh |2 dx≈∑

i
mi |u(xi , yi )−ui |2 (76)
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Table I. Convection skew to the mesh: convergence behavior for TP1.

Standard defect correction

NLEV NVT NDC ‖u−uh‖1 ‖u−uh‖2 umin umax

Semi-implicit FCT/consistent-mass matrix
6 4225 2500 1.1737e−2 6.2176e−2 0.0 1.0
7 16641 2461 7.3688e−3 4.8577e−2 0.0 1.0
8 66049 2489 4.7039e−3 3.8715e−2 0.0 1.0

Semi-implicit FCT/lumped-mass matrix
6 4225 751 1.9356e−2 8.4294e−2 0.0 0.9988
7 16641 1000 1.2402e−2 6.5356e−2 0.0 1.0000
8 66049 1014 7.8511e−3 5.1182e−2 0.0 1.0000

Galerkin scheme/consistent-mass matrix
6 4225 4666 3.6283e−2 7.4952e−2 −0.2557 1.4505
7 16641 7379 2.7340e−2 5.8124e−2 −0.2743 1.3797
8 66049 13852 2.3000e−2 5.2536e−2 −0.4437 1.4080

Galerkin scheme/lumped-mass matrix
6 4225 1000 6.5181e−2 1.3073e−1 −0.4022 1.5608
7 16641 1423 4.7055e−2 9.8663e−2 −0.4340 1.5732
8 66049 1500 3.5126e−2 8.0298e−2 −0.3713 1.5628

Semi-explicit FCT/consistent-mass matrix
6 4225 3190 9.3328e−3 5.4115e−2 0.0 1.0
7 16641 3220 5.4794e−3 4.1218e−2 0.0 1.0
8 66049 3590 3.3680e−3 3.2369e−2 0.0 1.0

Semi-explicit FCT/lumped-mass matrix
6 4225 1500 1.9098e−2 8.3498e−2 0.0 0.9989
7 16641 1501 1.2422e−2 6.5348e−2 0.0 1.0000
8 66049 1540 7.8662e−3 5.1167e−2 0.0 1.0000

wheremi =
∫
� �i dx are the diagonal coefficients of the row-sum lumped-mass matrix. Furthermore,

the global minimum umin=mini ui and maximum umax=maxi ui of the discrete solution uh were
compared with their analytical values 0 and 1.

Tables I and II illustrate the convergence behavior of the iterative flux/defect correction scheme
as applied to the test problems TP1 and TP2 on three successively refined meshes. The first three
columns in each table display the refinement level NLEV, the number of vertices/nodes NVT, and
the total number of outer iterations NDC required to compute the numerical solution at t=0.5. The
different performances of the six algorithms under consideration support the arguments presented
in Section 5.5. In particular, it can readily be seen that the use of the consistent-mass matrix results
in a much better accuracy but the convergence slows down, whereas the lumped-mass version is
less accurate but much more efficient. If the difference ‖un+1−un‖ is large, mass antidiffusion
affects the convergence rates even stronger than the convective part of the antidiffusive flux. Since
the latter is proportional to �t , the mass lumping error plays a dominant role at small time steps
such that A≈ML. On the other hand, the linear convergence rates improve since the condition
number of A decreases and its diagonal dominance is enhanced as the time step is refined.

Note that the consistent-mass Galerkin scheme faces severe convergence problems and the
error may even increase in the course of mesh refinement (see Table II). By contrast, the results
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Table II. Convection skew to the mesh: convergence behavior for TP2.

Standard defect correction

NLEV NVT NDC ‖u−uh‖1 ‖u−uh‖2 umin umax

Semi-implicit FCT/consistent-mass matrix
6 4225 2486 1.4799e−3 9.2813e−3 0.0 0.8562
7 16641 1833 4.3436e−4 2.7820e−3 0.0 0.9418
8 66049 2867 1.7887e−4 1.2032e−3 0.0 0.9740

Semi-implicit FCT/lumped-mass matrix
6 4225 1000 4.2704e−3 2.7827e−2 0.0 0.7308
7 16641 1000 1.7834e−3 1.1294e−2 0.0 0.9218
8 66049 736 7.6982e−4 4.6142e−3 0.0 0.9612

Galerkin scheme/consistent-mass matrix
6 4225 2500 1.3961e−3 2.6234e−3 −0.0158 0.9890
7 16641 6437 1.8892e−3 3.9001e−3 −0.0480 0.9925
8 66049 13700 2.3237e−3 8.1553e−3 −0.1363 1.0012

Galerkin scheme/lumped-mass matrix
6 4225 1000 1.0904e−2 4.2409e−2 −0.1911 0.8809
7 16641 1000 3.4837e−3 1.4234e−2 −0.0811 1.0098
8 66049 1000 1.3092e−3 4.3179e−3 −0.0322 1.0046

Semi-explicit FCT/consistent-mass matrix
6 4225 2651 1.0770e−3 7.6799e−3 0.0 0.8555
7 16641 2328 2.8414e−4 2.1692e−3 0.0 0.9471
8 66049 3434 1.3188e−4 9.8597e−4 0.0 0.9775

Semi-explicit FCT/lumped-mass matrix
6 4225 1500 4.2671e−3 2.7760e−2 0.0 0.7296
7 16641 1500 1.7751e−3 1.1237e−2 0.0 0.9211
8 66049 1500 6.4767e−4 3.8591e−3 0.0 0.9653

computed by the semi-implicit FCT algorithm exhibit monotone grid convergence as well as some
improvement of the convergence rates. Even the consistent-mass version converges slowly but
surely to a nonoscillatory time-accurate solution. For large time steps, the single-step implemen-
tation based on (44)–(45) would be more diffusive and converge faster. However, for time steps
as small as the one employed in this section, it would be just as accurate and converge at the
same rate as algorithm (35)–(43). The values of umax in Table II reveal that flux correction may
lead to undesirable ‘peak clipping’, which is a well-known phenomenon discussed, e.g. in [2, 6].
On the other hand, the associated high-order solution is corrupted by undershoots and overshoots
which are particularly large for discontinuous initial data (Table I) and less pronounced for the
smooth cosine hill (Table II). These nonphysical oscillations result in a dramatic loss of accuracy
and slow/no convergence, so that the results are inferior to those produced by the semi-implicit
FCT algorithm using the same settings.

It is not unusual that semi-explicit flux correction (29)–(34) as applied at the end of each time
step to the converged high-order predictor requires less outer iterations than the underlying Galerkin
scheme (see Tables I and II). However, the residual of the flux-corrected solution can no longer
be controlled and the total number of defect correction steps is considerably greater than that for
the semi-implicit FCT limiter, whereas the accuracy of the resulting solutions is comparable. Of
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Figure 5. Convection skew to the mesh: error reduction.

course, the linear system (13) could be solved in one step (without resorting to defect correction)
but this straightforward approach would inevitably lead to a severe deterioration of the linear
convergence rates. Indeed, the high-order operator MC−��t K is much harder to ‘invert’ than the
preconditioner A which enjoys the M-matrix property. In many cases, the high-order solution may
prove prohibitively expensive or even impossible to compute in such a brute-force way, unless a
direct solver is employed. Hence, even linear high-order systems of the form (14) call for the use
of iterative defect correction.

In order to obtain a better insight into the error reduction rate, Figure 5 displays the L1-errors
(top) and L2-errors (bottom) of all six methods for both benchmark configurations. For each
discretization, the solid line denotes the consistent-mass matrix, whereas the ‘lumped’ version is
indicated by dashed lines. Obviously, the rate of convergence is the same for the implicit (circular
markers) and explicit (square markers) FCT algorithm, whereby the norm of the error is slightly
smaller for the latter one if the consistent-mass matrix is adopted. Interestingly enough, both FCT
algorithms produce nearly the same results if mass lumping is performed. On the other hand,
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Table III. TP3: semi-implicit FCT with consistent-mass matrix, defect correction.

NLEV NVT CPU NN NN/�t NL NL/NN umin umax

‖r‖�10−4

5 1089 6 2500 1.0 2500 1.0 0.0 1.0
6 4225 23 2500 1.0 5000 2.0 0.0 1.0
7 16641 95 2500 1.0 5000 2.0 0.0 1.0
8 66049 422 2500 1.0 5000 2.0 0.0 1.0

‖r‖�10−8

5 1089 52 46809 18.72 46820 1.0 0.0 1.0
6 4225 200 47046 18.82 49546 1.05 0.0 1.0
7 16641 896 44827 17.93 51858 1.17 0.0 1.0
8 66049 4212 43405 17.36 63425 1.46 0.0 1.0

‖r‖�10−12

5 1089 148 142586 57.03 142597 1.0 0.0 1.0
6 4225 676 160254 64.10 162754 1.01 0.0 1.0
7 16641 3311 177602 71.04 184550 1.04 0.0 1.0
8 66049 15875 192895 77.16 212495 1.10 0.0 1.0

the solution produced by the high-order Galerkin scheme denoted by triangular markers is less
accurate which manifests itself in greater error norms. Moreover, it suffers from severe convergence
problems if the consistent-mass matrix is adopted and fails completely for the second test problem
if the mesh is successively refined.

The marginally better accuracy of the semi-explicit FEM-FCT scheme as compared with its
semi-implicit counterpart can be attributed to the better phase characteristics of the high-order
Galerkin scheme employed at the predictor step. On the other hand, the involved splitting error
may become pronounced in other settings, especially as the time step is increased. Moreover,
the linear and/or nonlinear convergence rates leave a lot to be desired so that the semi-implicit
approach combined with the discrete Newton method is preferable in many cases.

6.2. Swirling flow

Let us proceed to another two-dimensional benchmark problem proposed by LeVeque [26]. It deals
with a swirling deformation of initial data by the incompressible velocity field given by

vx =sin2(�x)sin(2�y)g(t), vy =−sin2(�y)sin(2�x)g(t)

The initial condition to be prescribed is a discontinuous function of the spatial coordinates which
equals unity within a circular sector of �/2 radians and zero elsewhere:

u(x, y,0)=
{
1 if (x−1)2+(y−1)2<0.8

0 otherwise

TP3: For the first test problem, let us employ a constant velocity profile which corresponds to

g(t)≡1
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Figure 6. Swirling deformation: semi-implicit FEM-FCT, t=2.5.

TP4: For the second test problem, we adopt a more ‘agile’ velocity field and let

g(t)=cos(�t/T ), 0�t�T

For both benchmark configurations, the mass distribution assumes a complex spiral shape in the
course of deformation. Figures 6 and 7 display the numerical solutions calculated by the semi-
implicit FCT algorithm (35)–(43) with consistent-mass matrix using the time step �t=10−3.

Recall that for TP3, the low-order evolution operator A remains constant and can be assembled
once and for all at the beginning of the simulation. The numerical results at time t=2.5 are
computed on a uniform mesh of 128×128 bilinear finite elements and depicted in Figure 6 (top).
The use of a piecewise-linear finite element approximation on a triangular mesh with the same
number of nodes yields virtually the same solution, see Figure 6 (bottom). For the difference
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Figure 7. Swirling deformation: semi-implicit FEM-FCT, 128×128 Q1-elements.

between the underlying triangulations to be visible, both profiles were output on a coarser mesh
consisting of 4225 vertices. In either case, the resolution of discontinuities is seen to be remarkably
crisp. These results compare well with those presented in [6] using algebraic AFC of TVD type.

On the other hand, the velocity vector is strongly time dependent for benchmark TP4. After
the startup, the flow gradually slows down and reverses at t=T/2 such that the initial profile
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Table IV. TP3: semi-implicit FCT with consistent-mass matrix, Newton’s method, �=10−4.

NLEV NVT CPU NN NN/�t NL NL/NN umin umax

‖r‖�10−4

5 1089 7 2500 1.0 2500 1.0 −1.789e−02 1.026
6 4225 24 2500 1.0 2500 1.0 −9.153e−03 1.054
7 16641 102 2500 1.0 2500 1.0 −3.906e−02 1.121
8 66049 442 2500 1.0 2500 1.0 −5.087e−02 1.202

‖r‖�10−8

5 1089 32 9891 3.96 44547 4.50 −1.319e−11 1.0
6 4225 138 9917 3.97 48379 4.88 −1.430e−09 1.0
7 16641 611 9294 3.72 49464 5.32 −5.427e−12 1.0
8 66049 2736 8974 3.59 50991 5.68 −8.505e−09 1.0

‖r‖�10−12

5 1089 84 25640 10.26 123412 4.81 0.0 1.0
6 4225 369 26538 10.62 141645 5.34 0.0 1.0
7 16641 1674 25061 10.02 146212 5.83 0.0 1.0
8 66049 7113 22287 8.91 139868 6.28 0.0 1.0

Table V. TP3: semi-implicit FCT with consistent-mass matrix, Newton’s method, �=10−1.

NLEV NVT CPU NN NN/�t NL NL/NN umin umax

‖r‖�10−4

5 1089 7 2500 1.0 2500 1.0 −1.789e−02 1.026
6 4225 24 2500 1.0 2500 1.0 −9.153e−03 1.054
7 16641 104 2500 1.0 2500 1.0 −3.906e−02 1.121
8 66049 443 2500 1.0 2500 1.0 −5.085e−02 1.202

‖r‖�10−8

5 1089 22 10008 4.0 17436 1.74 −4.087e−10 1.0
6 4225 85 9997 4.0 17574 1.76 −1.165e−09 1.0
7 16641 370 9938 3.98 17944 1.81 −9.854e−09 1.0
8 66049 1597 9472 3.79 18005 1.90 −1.797e−07 1.0

‖r‖�10−12

5 1089 56 26448 10.75 45770 1.70 0.0 1.0
6 4225 223 27697 11.08 48512 1.75 0.0 1.0
7 16641 939 25922 10.37 49030 1.89 0.0 1.0
8 66049 3787 22540 9.02 47634 2.11 0.0 1.0

is recovered as exact solution at the final time t=T , that is, u(x, y,T )=u(x, y,0). The value
T =1.5 is used, which corresponds to performing 1500 time steps of size �t=10−3. The numerical
solutions at t=0.75 and 1.5, which are displayed in Figure 7, were calculated on a mesh of
128×128 bilinear finite elements by the semi-implicit FCT algorithm with the consistent-mass
matrix. The solution profiles resulting from the application of the lumped-mass matrix are slightly
more diffusive but ‘look’ quite similar.
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Figure 8. TP3: influence of perturbation parameter �, t ∈[1.0,1.0+�t].

For these two benchmark configurations, we performed an in-depth convergence study on four
successively refined quadrilateral meshes. A detailed comparison between the standard defect
correction method and the discrete Newton approach is presented in Tables III–V.

As before, the first two columns display the refinement level NLEV and the number of
vertices/nodes NVT. All tests were performed on an Intel Core Duo T2400 (1.83GHz, FSB
667MHz) processor with 1024MB (553MHz) of system memory. The code was compiled with
the Intel Fortran 9.1 Compiler for Linux making use of the -fast switch which yields the best
results for this setup. The total CPU time (in seconds) required to reduce the norm of the nonlinear
residual to the prescribed tolerance in each time step is given in the third column. In the next four
columns, the total number of nonlinear iterations (NN), the number of nonlinear iterations per
time step (NL/�t), the total number of linear iterations (NL) and the number of linear iterations
per nonlinear iteration (NL/NN) are displayed in successive order. Owing to the lack of an exact
solution for this benchmark configuration only the global minimum and maximum of the discrete
solution uh are compared with their analytical values 0 and 1.

It can be seen from Table III that the convergence behavior of the standard defect correction
scheme deteriorates significantly if the tolerance for the residual norm is reduced from 10−8 to
10−12. Moreover, for the latter, the number of outer iterations increases if the mesh is successively
refined. On the other hand, the minimal and maximal solution values perfectly match their analytical
bounds 0 and 1 due to the M-matrix property of A.

The convergence behavior of the discrete Newton approach making use of a constant forcing term
�=10−4 as suggested in [27] is displayed in Table IV. This choice is quite restrictive and requires
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Figure 9. TP3: influence of perturbation parameter �, t ∈[1.0,1.0+�t].

uniformly close approximations of Newton steps in each nonlinear iteration. It reportedly yields
local q-linear convergence in some special norm [18]. As compared with the defect correction
approach, the number of outer iterations is drastically reduced for all prescribed tolerances and, in
addition, it does not increase for finer grids. On the basis of the moderate number of linear sub-
iterations, we believe that the ILU decomposition of the monotone evolution operator A constitutes
an appropriate preconditioner for the employed BiCGSTAB algorithm. Importantly, convergence of
the fixed-point iteration is a prerequisite for the Newton method to produce a positivity-preserving
solution. This is best illustrated by the unsatisfactory minimal and maximal solution values for the
loose residual tolerance 10−4.

Let us briefly address the phenomenon of oversolving [18] the linear subproblems. To this end,
we relax the forcing term �=10−1 and leave all other parameters unchanged. The results computed
by the discrete Newton method are shown in Table V. The nonlinear convergence behavior is quite
similar to that observed for the more restrictive choice �=10−4. However, the number of inner
iterations is reduced by a factor of 2.5.3, which results in a significant reduction of the overall
CPU time. Our experiments with different strategies for choosing the forcing term � adaptively
[18] and even solving the linear subproblems directly [28] revealed the fact that the simplest choice
�=10−1 yields the most competitive results in terms of overall performance for this class of
time-dependent flows. On the one hand, the time step �t=10−3 was chosen moderately small to
resolve the temporal evolution with high precision. On the other hand, the amount of antidiffusion
accepted by the FCT flux limiter is inversely proportional to �t so that the computed solution
profiles become more diffusive if larger time steps are employed. Consequently, the convergence
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Table VI. TP4: semi-implicit FCT, ‖r‖�10−8, �=10−1.

NLEV NVT CPU NN NN/�t NL NL/NN ‖u−uh‖1 ‖u−uh‖2
Defect correction/consistent-mass matrix
5 1089 89 24136 16.09 24136 1.0 2.7748e−2 8.8019e−2
6 4225 333 22694 15.13 23488 1.03 1.5630e−2 6.7038e−2
7 16641 1293 19883 13.26 21954 1.10 8.8456e−3 5.0641e−2
8 66049 5203 17959 11.97 22812 1.27 5.1680e−3 3.8747e−2

Defect correction/lumped-mass matrix
5 1089 17 2720 1.81 2720 1.0 4.5446e−2 1.1689e−1
6 4225 57 2738 1.83 3481 1.27 2.9877e−2 9.4992e−2
7 16641 259 2804 1.87 3818 1.36 1.9192e−2 7.5658e−2
8 66049 1186 2953 1.97 4777 1.62 1.2250e−2 5.9934e−2

Newton’s method/consistent-mass matrix
5 1089 28 5506 3.67 9501 1.73 2.7743e−2 8.8007e−2
6 4225 106 5241 3.94 9074 1.73 1.5624e−2 6.7021e−2
7 16641 442 4831 3.22 8342 1.73 8.8374e−3 5.0609e−2
8 66049 1844 4506 3.0 7802 1.73 5.1604e−3 3.8719e−2

Newton’s method/lumped-mass matrix
5 1089 12 1510 1.01 1510 1.0 4.5441e−2 1.16882e−1
6 4225 42 1513 1.01 1513 1.0 2.9868e−2 9.4975e−2
7 16641 188 1572 1.05 1572 1.0 1.9175e−2 7.5623e−2
8 66049 910 1803 1.20 1803 1.0 1.2231e−2 5.9887e−2

rates of the defect correction method and of the discrete Newton algorithm improve but the solution
is smeared by numerical diffusion.

It is well known that choosing an appropriate perturbation parameter � is a delicate task. In
our simulations we employed �=[(1+‖u‖)�]1/3, where �mach denotes the machine precision,
as proposed by Pernice et al. and successfully used in the NITSOL package [23]. In order to
investigate the influence of this ‘free’ parameter we repeated the simulation on mesh level 7 for
fixed parameter values �=� and 0.01, respectively. Figure 8 displays the nonlinear convergence
behavior for the different solution strategies. The curve for the defect correction method is marked
by stars, whereas circles stand for the rapidly converging Newton method (�=10−1, �=�). Using
machine precision as perturbation parameter works for this test case, but it is likely to diverge in
other situations due to round-off errors and, hence, not to be recommended in general. The strategy
proposed by Pernice et al. (square markers) requires slightly more nonlinear steps but turns out
to be more robust. Furthermore, the devastating effect of choosing the perturbation parameter too
large, e.g. �=0.01, is illustrated by the fourth curve (triangles). If � is increased even further,
the convergence of Newton’s method slows down until it resembles that of the defect correction
approach.

Another quantity of interest is the computing time per time step spent for each vertex, which
is illustrated in Figure 9. Here, the circles correspond to the standard defect correction approach,
whereas triangles and squares stand for Newton’s method making use of the forcing term �=10−4

and 10−1, respectively. The three curves plotted for each method denote the different tolerances
for the nonlinear residual. It is worth mentioning that for the least restrictive choice �=10−1,
the nodal CPU time remains nearly constant if the number of vertices is increased, whereas a
systematic growth is observed for both other methods.
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Figure 10. TP4: nodal CPU time/error reduction.

Table VI illustrates the convergence behavior of the different solution methods and the errors of
the finite element approximation uh at time t=1.5 for our benchmark configuration TP4. For all
computations, a moderate stopping criterion ‖r‖�10−8 was used and the approved forcing strategy
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�=10−1 was adopted for Newton’s method. Moreover, the perturbation parameter � was computed
as proposed by Pernice and Walker [23] and utilized for the divided difference approximation. All
other parameter settings, e.g. the configuration of the linear solver, remain unchanged. It can be
readily seen that the discrete Newton approach outperforms the standard defect correction scheme
in all situations.

Figure 10 (top) illustrates the CPU time spent per node in each time step which remains nearly
constant for all mesh levels. As before, the circular markers correspond to the standard defect
correction method, whereas squares are used for the discrete Newton approach. Here, the dashed
lines represent the lumped-mass versions of the two algorithms. The significant overhead costs
of the slowly converging defect correction method are clearly visible. The solution errors, which
are virtually the same for both nonlinear solution strategies, exhibit a monotone reduction on
sufficiently fine meshes as illustrated in Figure 10 (bottom).

7. CONCLUSIONS

The semi-implicit approach to flux correction of FCT type leads to a robust and efficient special-
purpose algorithm for time-dependent problems discretized in space by the FEM. The accuracy of
the resulting scheme improves as the time step is refined and the consistent-mass matrix can be
included in a positivity-preserving fashion. The new limiting strategy makes it possible to avoid
a repeated computation of the nodal correction factors at each outer iteration. Therefore, the use
of an implicit time-stepping method pays off in spite of the CFL-like condition to be satisfied
by the time step in the case �<1. For sufficiently small time steps, the new algorithm is more
accurate and/or efficient than the AFC schemes proposed in [9, 11]. On the other hand, it is not to
be recommended for steady-state computations which call for the use of large time steps. In this
case, both the limiting strategy and the underlying constraints need to be redefined as explained
in [12].

In order to solve the nonlinear algebraic systems, a discrete Newton approach was devised
making use of the fact that the underlying sparsity pattern is known a priori. The Jacobian matrix
was assembled edge by edge using numerical differentiation as applied to the low-order operator
and to the vector of limited antidiffusive fluxes. The use of a new semi-implicit limiting strategy
makes it possible to assemble the Jacobian matrix in a particularly efficient way, which results in
a significant reduction (by a factor of 2.5.3.5) of the total CPU time as compared with standard
defect correction. The semi-explicit FCT algorithm was found to provide a slightly better accuracy
for the test cases considered in the present paper. However, the high-order system to be solved
at the predictor step is extremely ill conditioned, which requires the use of a slowly converging
defect correction scheme preconditioned by the low-order operator.
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